

# FIS Data Model Approach Overview of SEFSC Using Dimensional Modeling

Overview of Dimensional Modeling
Benefits of the Approach
Tips and Techniques we Discovered Along the Way



# Agenda

- High Level Project Overview
  - Project Phases and Status
  - Role of Metadata and Oracle Warehouse Builder (OWB)
  - Goals
    - Goals of the Data Warehouse Project
    - Goals of the Extract-Transform-Load (ETL) Phase
  - ETL Task Diagram
- Dimensional Modeling
  - Facts, Measures and Dimensions
- NOAA ETL Architecture
  - ETL Process Flow



# Presentation Does Not Focusing On...

- Types of tools and brand names
- Project management practices
- Details about Metadata use



### SEFSC Data Warehouse Project Phases



#### **Phase I Requirements and Design**

- Gather requirements
- Design warehouse
- Build proof of concept
- Present prototype

#### Phase II

#### **Extract-Transform-Load**

- Review prior work
- Dimensional Modeling
- Build Staging
- Load Data Presentation Area

#### **Phase III**

#### **Data Access**

- Configure access with OLAP tools
- Setup security
- Build report templates
- Training and rollout

#### Metadata

Phase I: Design and prototype (proof of concept)

Phase II: Extract-Transform-Load

Phase III: Data access and presentation

Parallel Effort: Metadata



#### Role of Metadata and OWB

- Metadata is all the information in the warehouse that is not the actual data
- Source schemas and access views
- Staging processes, transformations, and cleansing rules
- ETL schedules, security and confidentiality settings
- OWB repository mappings, objects and tools

Metadata is akin to an encyclopedia for the data warehouse – additional Metadata is a separate and ongoing effort



#### Goals of the Data Warehouse

- Make information easily accessible
  - Content must be understandable
- Present information consistently
  - Data in the warehouse must be credible
- Must be adaptive and resilient to change
  - Design to handle changes gracefully
- Must be a secure repository
  - Maintain confidentiality
- Support improved decision making
  - Reliable source of analysis data for decisions



#### Goals of the ETL Phase

- Build extracts from the source systems
- Build the data staging area
   (between source systems and data presentation area)
- Clean, combine and standardize the data
- Populate the data presentation area using dimensional modeling methods



### ETL Task Diagram



ETL tasks move operational source data to dimensional models



# Agenda

- High Level Project Overview
  - ✓ Project Phases and Status
  - ✓ Role of Metadata and Oracle Warehouse Builder (OWB)
  - √ Goals
    - Goals of the Data Warehouse Project
    - Goals of the Extract-Transform-Load (ETL) Phase
  - ✓ ETL Task Diagram
- Dimensional Modeling
  - Facts, Measures and Dimensions
- NOAA ETL Architecture
  - ETL Process Flow



# **Elements of Dimensional Modeling**

- Facts (measurements)
  - The primary table to a dimensional model
  - A row corresponds to a measurement
  - Best if numeric and additive
  - Measurement data from a single business process stored in single data mart
  - Measurements are the intersection of dimensions
- Example
  - Pounds Landed
  - Number of Samples taken



# **Elements of Dimensional Modeling**

- Dimensions
  - Textual description of the business
  - The by words
    - See the measure by month, by species, by dealer
  - Query constrains, groupings, report labels
  - The entry point into the Fact tables
  - Robust dimensions attributes provide dicing and slicing analytic capability
- Example
  - Species
  - Dealers



### Dimensional Model (example)



### The Date Dimension (a closer look)

#### Dim Date

Date\_Key
Full\_Date
Full\_Date\_Name
Day\_Name
Day\_Number\_In\_Week
Day\_Number\_In\_Month
Day\_Number\_In\_Year
Week\_Number\_In\_Year
Month\_Name
Month\_Number
Quarter
Year
Weekday\_Indicator

- Built in advance
  - □ Range 1960 2010
- Surrogate key (red)
- Natural key (green)
- Conformed dimension (blue)
- May provide Date attributes not supported by SQL Date function
  - E.g. Lobster season
- Change/expand gracefully
  - E.g. Decade attribute





# The Date Dimension (a closer look)

| DAY_KEY | FULL_DATE | FULL_DATE_NAME   | DAY_NAME  | WEEK IN YR | MONTH_NAME | QUARTER | YEAR | WEEKDAY_INDICATOR |
|---------|-----------|------------------|-----------|------------|------------|---------|------|-------------------|
| 18641   | 1/1/1960  | January 1, 1960  | FRIDAY    | 1          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18642   | 1/2/1960  | January 2, 1960  | SATURDAY  | 1          | JANUARY    | 1       | 1960 | WEEKEND           |
| 18643   | 1/3/1960  | January 3, 1960  | SUNDAY    | 1          | JANUARY    | 1       | 1960 | WEEKEND           |
| 18644   | 1/4/1960  | January 4, 1960  | MONDAY    | 1          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18645   | 1/5/1960  | January 5, 1960  | TUESDAY   | 1          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18646   | 1/6/1960  | January 6, 1960  | WEDNESDAY | 1          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18647   | 1/7/1960  | January 7, 1960  | THURSDAY  | 1          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18648   | 1/8/1960  | January 8, 1960  | FRIDAY    | 2          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18649   | 1/9/1960  | January 9, 1960  | SATURDAY  | 2          | JANUARY    | 1       | 1960 | WEEKEND           |
| 18650   | 1/10/1960 | January 10, 1960 | SUNDAY    | 2          | JANUARY    | 1       | 1960 | WEEKEND           |
| 18651   | 1/11/1960 | January 11, 1960 | MONDAY    | 2          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18652   | 1/12/1960 | January 12, 1960 | TUESDAY   | 2          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18653   | 1/13/1960 | January 13, 1960 | WEDNESDAY | 2          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18654   | 1/14/1960 | January 14, 1960 | THURSDAY  | 2          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18655   | 1/15/1960 | January 15, 1960 | FRIDAY    | 3          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18656   | 1/16/1960 | January 16, 1960 | SATURDAY  | 3          | JANUARY    | 1       | 1960 | WEEKEND           |
| 18657   | 1/17/1960 | January 17, 1960 | SUNDAY    | 3          | JANUARY    | 1       | 1960 | WEEKEND           |
| 18658   | 1/18/1960 | January 18, 1960 | MONDAY    | 3          | JANUARY    | 1       | 1960 | WEEKDAY           |
| 18659   | 1/19/1960 | January 19, 1960 | TUESDAY   | 3          | JANUARY    | 1       | 1960 | WEEKDAY           |

# **Elements of Dimensional Modeling**

- Types of Fact table measures
  - Transaction
    - At the individual transaction level
    - Represent an event that occurred at an instantaneous point in time
  - Periodic snapshot
    - See cumulative performance at regular intervals
    - Show a trendable view of performance metrics
  - Accumulating snapshot
    - Indeterminate time span covering a complete life of a transaction/series of events
    - Multiple data stamps for predictable major events



# Agenda

- High Level Project Overview
  - ✓ Project Phases and Status
  - ✓ Role of Metadata and Oracle Warehouse Builder (OWB)
  - √ Goals
    - Goals of the Data Warehouse Project
    - Goals of the Extract-Transform-Load (ETL) Phase
  - √ ETL Task Diagram
- Dimensional Modeling
  - √ Facts, Measures and Dimensions
- NOAA ETL Architecture
  - ETL Process Flow





The multi-tier or "hub-and-spoke" data warehouse features a general-purpose relational data staging area as the "hub", coupled with OLAP-based application specific data marts as "spokes" to deliver information efficiently



#### SEFSC ETL Architecture







# **Example Mapping**





# **Example Work Flow**



Workflow Design Screen: Oracle Warehouse Builder



# Other models: Accumulated Landings





#### **Trip Interview Model**







# Trip Interview Report

| -                          |            |     |     |     | _   |     |     |     |     |     |     |     |       |
|----------------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| YEAR                       | 1993       |     |     |     |     |     |     |     |     |     |     |     |       |
|                            |            |     |     |     |     |     |     |     |     |     |     |     |       |
| Count of Sum (Days Fished) | MONTH_NAME |     |     |     |     |     |     |     |     |     |     |     |       |
|                            |            |     |     |     |     |     |     |     |     |     |     |     |       |
|                            |            |     |     |     |     |     |     |     |     |     |     |     | Grand |
| VESSEL_NAME                | JAN        | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | ОСТ | NOV | DEC | Total |
| 2ND DESTINY                | 1          |     |     |     |     |     |     |     |     |     |     | 1   | 2     |
| 2ND WIND                   | 1          |     |     |     |     |     |     | 1   |     |     | 1   | 1   | 4     |
| 786 BENGAL I               |            |     | 1   |     |     |     |     |     |     |     |     |     | 1     |
| ADELAIDE                   |            |     |     | 1   |     |     |     |     |     |     |     |     | 1     |
| ADVENTUROUS                |            |     |     |     |     |     |     |     |     |     |     | 1   | 1     |
| AILEEN II                  | 1          |     |     |     |     |     |     |     | 1   |     |     | 1   | 3     |
| ALEX                       |            |     |     |     |     | 1   |     |     |     |     | 1   |     | 2     |
| ALEX JAMES                 |            |     |     |     | 1   |     |     |     |     |     |     |     | 1     |
| ALEXIS M                   | 1          |     |     |     |     |     |     |     | 1   |     |     | 1   | 3     |
| ALLANA KAY                 | 1          |     |     |     |     |     |     |     | 1   |     | 1   | 1   | 4     |
| ALMOST                     | 1          |     |     |     |     |     |     |     |     |     |     |     | 1     |
| AMY MARIE                  |            |     |     |     |     | 1   |     |     |     |     |     |     | 1     |
| AMY MICHELLE               | 1          | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |     |     | 10    |
| ANGLER                     | 1          | 1   | 1   |     | 1   |     |     | 1   | 1   |     |     |     | 6     |





### **ETL Workflow**



### Unknown & Orphan records

- Unknown records
  - Provide a value to represent 'Unknown'
  - Optional data that is missing becomes valued as Unknown
- Orphan
  - We have Fact data without Dimension Data
  - Generate Orphan records and report
  - Allow loading process to continue



# Questions

